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INTRODUCTION 
BACKGROUND 
Data Distribution Service (DDS) is a real-time, brokerless middleware standard designed for 

distributed systems that require low-latency, high-reliability, and scalable communication. By 

enabling direct peer-to-peer communication through the Real-Time Publish-Subscribe (RTPS) 

protocol, DDS avoids centralized bottlenecks and supports fine-grained Quality of Service (QoS) 

control for deterministic performance. 

The da Vinci Research Kit (dVRK) currently relies on the cisstMultiTask software framework, 

which manages modular, real-time execution through its core building block, mtsComponent. [1] 

This component-based design enables structured data flow and command exchange through well-

defined interfaces. For interprocess and interdevice communication, the system uses the Robot 

Operating System (ROS) via the mtsROSBridge. However, the ROS middleware layer introduces 

communication latency, system overhead, and limited scalability, making it less suitable for the 

stringent real-time demands of surgical robotics. 

GOAL 
As shown in Figure 1, the goal of this project is to replace the ROS-based middleware in the dVRK 

software stack with DDS, enabling more efficient and deterministic interprocess communication. 

This requires developing a DDS communication layer that conforms to the existing mtsComponent 

architecture in cisstMultiTask, which promotes modularity, thread safety, and real-time 

responsiveness through its interface-based design. Preserving this architecture is essential to 

ensure seamless integration and consistent system behavior. 

Beyond internal communication, the project also aims to retain compatibility with the broader ROS 

2 ecosystem. Tools such as RViz, Gazebo, and MoveIt rely on standardized ROS 2 naming 

conventions, and since ROS 2 itself is built on top of DDS providers (e.g., RTI Connext, Cyclone 

DDS), aligning DDS message definitions with ROS 2 conventions allows for interoperability. This 

hybrid approach enables the system to benefit from the performance of native DDS while 

continuing to leverage the tooling and visualization capabilities of ROS 2. 

 



 

 

 

Figure 1. dVRK Software Architecture. The IPC/IDC communication is achieved by ROS which 

also allows integration with popular tools such as RViz, Gazebo, and MoveIt. The new DDS 

middleware is proposed as the replacement for ROS Middleware.  

 

SIGNIFICANCE 
Replacing ROS’s default middleware with a native DDS-based solution brings several key 

advantages to real-time robotic systems, particularly in surgical applications where performance 

and determinism are non-negotiable. 

First, DDS offers ease of implementation and deployment. ROS 2 installations often involve 

complex dependencies, fragile package versions, and lengthy setup processes—especially when 

building from source or enabling real-time capabilities. In contrast, DDS implementations such as 

RTI Connext DDS are packaged as standalone middleware libraries that are easier to integrate into 

custom robotic software stacks without needing to install the full ROS ecosystem. 

Second, DDS provides broader platform compatibility. Although ROS 2 supports multiple 

operating systems in theory, its real-time support, tooling, and package stability are largely 

optimized for Linux—often limiting deployment options for embedded systems, real-time 

operating systems (RTOS), or Windows-based environments. In contrast, DDS middleware like 

RTI Connext DDS is designed for seamless deployment across Linux, Windows, QNX, VxWorks, 

and other platforms, making it a better choice for cross-platform and production-grade 

deployments. 



 

 

Third, DDS enables superior performance and deterministic communication. Studies have shown 

that DDS can outperform traditional message brokers and ROS 2’s RMW by over 50% in terms 

of latency[2], which is essential in applications requiring microsecond-level responsiveness. DDS’s 

peer-to-peer architecture eliminates centralized bottlenecks, ensuring scalable, real-time data flow 

with predictable timing. 

Finally, RTI Connext was selected for this project not only for its high performance and reliability 

but also because it offers a free academic license and a rich ecosystem of development tools. These 

include traditional utilities like the Admin Console, Monitor, and Recording Service for real-time 

introspection, as well as modern AI-powered features that significantly accelerate development. 

For instance, developers can now integrate Connext with GitHub Copilot in Visual Studio Code, 

enabling automatic code generation, intelligent error detection, and contextual assistance. RTI’s 

AI-powered System Designer allows users to prototype and configure DDS XML profiles using 

natural language, while the Connext AI Chatbot provides real-time, product-specific help with 

QoS tuning, code validation, and system design. These features not only streamline the 

development workflow but also lower the learning curve for new users—making DDS a more 

accessible and scalable solution for building complex, real-time robotic systems. 

Together, these advantages position DDS not only as a technically superior middleware for high-

performance medical robotics but also as a practical and scalable solution for long-term, cross-

platform deployment. 

 

TECHNICAL APPROACH 
DESIGN OVERVIEW 
To integrate DDS into the dVRK communication framework, I developed a new component, 

mtsDDSBridge, based on the cisstMultiTask architecture as shown in Figure 2. The system bridges 

CISST components with DDS-based interprocess communication (IPC), replacing ROS-based IPC 

while maintaining compatibility with existing ROS-based applications. Hence, legacy ROS scripts 

remain fully compatible after this upgrade. 

The mtsDDSBridge class inherits from mtsTaskPeriodic, enabling it to operate as a thread-safe 

component with built-in support for real-time execution, connection to other CISST components, 



 

 

and runtime services such as logging and debugging. This design ensures that DDS communication 

can be seamlessly embedded into the existing dVRK software infrastructure. 

Another core function of the bridge is data type conversion. Since CISST uses its own encapsulated 

data types that wrap standard C++ types, the mtsDDSBridge implements conversion routines that 

translate these types into DDS-compatible and ROS-compatible formats. Crucially, the conversion 

preserves the data timestamps, which are essential for functions or applications that process data 

from different sources. To facilitate interoperability with ROS, the system adheres to ROS-

compatible topic naming and message type conventions. As a result, real-time joint position 

updates from the robot can be visualized in RViz, bypassing the ROS middleware entirely. 

From a user perspective, the implementation of mtsDDSBridge brings significant flexibility and 

usability improvements. Users can now choose to access the dVRK system either through standard 

ROS nodes or by creating native DDS nodes. Plus, users can greatly benefit from the AI-assisted 

tools to create their DDS application framework using System Designer and Connext Chatbot, 

allowing them to concentrate more on the core code. 
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Figure 2. mtsDDSBridge middleware architecture. The middleware provides interfaces to the 

ROS family applications and to the CISST component. The user can also access those interfaces 

either from a DDS node or ROS node with publisher-subscribe model. 

 



 

 

KEY DESIGN PATTERN 
In this section, I will further explain the design philosophy of mtsDDSBridge with respect to three 

aspects: the communication model, DDS class instantiation (participant, publisher, etc.), and ROS-

compatible topic design. The mtsDDSBridge is designed to mirror the modular and interface-based 

architecture of the cisstMultiTask framework while exposing its communication channels to the 

DDS network. As shown in Figure 3, mtsDDSBridge connects to a given CISST component (e.g., 

dVRK) via its required and provided interfaces, enabling external DDS nodes to interact with 

internal CISST commands, events, and data streams. In CISST, events and commands use named 

functions (event handlers and command interfaces) to drive logic, while data transmission uses 

StateTable integration to handle continuous, timestamped data exchange. You can find a more 

intuitive example from Chocolate Factory. 

These represent different patterns of data flow and control, and users can employ a DDS node 

using specific function templates that instantiate DDS publishers or subscribers accordingly. 
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Figure 3. Data/Signal interfaces between CISST component and mtsDDSBridge 

 

The mtsDDSBridge follows the recommended DDS communication structure outlined by RTI 

Connext [3], using a hierarchical design pattern to instantiate and manage DDS entities. This 

https://github.com/stevenleon99/cisst_dds_bridge/blob/main/cisst_dds_bridge/example/example.cpp
https://community.rti.com/static/documentation/connext-dds/current/doc/manuals/connext_dds_professional/getting_started_guide/cpp98/intro_datatypes.html


 

 

structured approach ensures modularity, scalability, and consistent application of QoS (Quality of 

Service) policies across components. As shown in Figure 4, the foundational building block is the 

Participant, which represents a single application instance in a DDS domain. All communication 

entities—Publishers, Subscribers, DataWriters, and DataReaders—are created from this 

participant. Each level supports its own class of QoS policies.  

In mtsDDSBridge, this structure is reflected in the add_dds_publisher() and add_dds_subscriber() 

functions, which instantiate Publisher and Subscriber objects tied to the central participant. These 

functions first check whether an instance already exists for the given name, and if so, they reuse 

the existing object rather than creating a new one. Reusing publishers and subscribers helps to 

conserve system resources and maintain consistent QoS policy application. Writers and readers 

are then created per topic through helper classes, following a one-to-one mapping with CISST 

communication endpoints.  
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Figure 4. DDS Entity Hierarchy and QoS Configuration Layers 

 

To ensure interoperability between DDS nodes and ROS applications, the mtsDDSBridge adheres 

to a two-step compatibility process that enables seamless data exchange and topic discovery within 

the ROS ecosystem. 

Step 1: ROS Topic Name Convention: ROS 2 relies on a specific naming convention for DDS 

topics. To make DDS topics discoverable and interpretable by ROS applications, topic names must 

conform to ROS's namespace and prefixing rules. 

• Regular ROS topics are discovered if they are prefixed with "rt/" (i.e., "ROS topic") as 

shown in Figure 5a.  

• Topics related to services, actions, and parameters follow the "rq/" (request) and "rr/" 

(response) prefix patterns. 



 

 

Step 2: ROS-Compatible Data Types: DDS message types must also match ROS expectations for 

communication to succeed. ROS message types are translated into DDS IDL-generated types, 

often nested under vendor-specific namespaces as shown in figure 5b. For example: 

• A ROS 2 std_msgs/String message is converted to the DDS type: 

std_msgs::msg::dds_::String_ 

A ROS-DDS communication test script was developed as shown in figure 5c to show the messages 

can successfully stream on the topic “PSM1/measured_js”. 

 

  

 
 

Figure 5 a. ROS 2 Topic Naming Convention with DDS Prefixes (rt/, rq/, rr/) b. ros-integration-

tool. This tool can scan the path for ROS data type and automatically convert them with a legal 

DDS .IDL file. c. Demonstrate a DDS node can communicate with a pure ROS node (RViz). A 

a b 

c 

https://github.com/RTInd/ros-integration-toolkit
https://github.com/RTInd/ros-integration-toolkit


 

 

ROS-DDS Communication Test script is used to control the trajectory of PSM1 and collect the 

joint state data. [Here is a complete demo video] 

 

IMPLEMENTATION 
The mtsDDSBridge middleware is instantiated and equipped to a CISST component in two ways:  

Method 1 manual integration within a sample project: In this method, both the target CISST and 

the mtsDDSBridge component are created within the same project. Developers can explicitly 

register both components using mtsManagerLocal, and manually connect the required and 

provided interfaces through the code. [Method1 example] 

Method 2: Library Integration for Existing Executables: When integrating the bridge into an 

existing CISST-based application—such as dvrk_console_json or 

sawIntuitiveResearchKitQtJSON—the mtsDDSBridge component is compiled into a shared 

library In this case, interface connections are automatically configured at runtime using a .json 

configuration file. This file defines both the library reference and the interface connection schema, 

allowing the executable to dynamically load and link the bridge without modifying its source code. 

[Method2 example] 

 

EXPERIMENT SETUP  
To evaluate the performance of the mtsDDSBridge, two experiments were conducted using 

different integration methods and application contexts. Each experiment is designed to assess 

specific performance aspects of the bridge, including throughput, latency, and trajectory-following 

fidelity.  All experiments were performed on a single computer (Intel(R) Core(TM) i7-14700KF   

3.40 GHz, 32GB RAM), using ROS or DDS to provide inter-process communication. 

The first experiment aims to compare the throughput capability of mtsDDSBridge versus the 

existing mtsROSBridge. As illustrated in Figure 6, both bridges were integrated into the same 

application: dvrk_console_json. A designed frequency ranging from 100 Hz to 100 kHz was 

configured in the main application loop. The system’s server-side publishing rate (DDS or ROS 

bridge frequency) and client-side subscription rate (DDS or ROS subscriber frequency) were 

https://github.com/stevenleon99/cisst_dds_bridge/blob/main/cisst_dds_bridge/test/ddsROSCommTest.py
https://drive.google.com/file/d/1GtuWdwrkMg6oUVV-rhBpx9G2BfLztl02/view?usp=drive_link
https://github.com/stevenleon99/cisst_dds_bridge/tree/main/cisst_dds_bridge/example2
https://github.com/stevenleon99/cisst_dds_bridge/tree/main/cisst_dds_bridge/example2


 

 

measured to determine how efficiently data is transmitted and received across the two middleware 

systems. 

Although such high frequencies exceed those used in practical robot control scenarios, the purpose 

of this experiment is to stress the system and identify maximum achievable throughput. 
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Figure 6. Maximum Throughput Performance Evaluation Experiment Setup 

 

 

The second experiment evaluates communication latency and trajectory-following performance 

using mtsDDSBridge in a closed-loop robotic control task. As shown in Figure 7, the experiment 

is executed using sawIntuitiveResearchKitQtConsoleJSON with the mtsDDSBridge linked as a 

library. An external Python script, ddsPSMSinMoveTest.py, is used to publish a predefined cosine 

joint trajectory via the servo_jp topic. During execution, the script also subscribes to setpoint_js 

and measured_js topics to collect feedback. 

Latency measurement: Extract timestamps from setpoint_js messages and compare them to 

timestamps in servo_jp commands to calculate roundtrip latency. 

Trajectory deviation analysis: Analyze joint position values from measured_js and compare them 

against expected cosine wave values to compute trajectory error under different bridge publishing 

frequencies. 



 

 

sawIntuitiveResearchKit
QtConsoleJSON

PSM1 Joint2 
(Pitch)

sawRobotIO1394

DDSBridge

ddsPSMSinM
oveTest.py

Pub: Joint2 
movement in a cos 

wave

Sub: Joint2 position

Servo_jp

Measured_js
Setpoint_js

mtsComponent (PSM)

 
 

Figure 7. Trajectory Following Performance Evaluation and Latency Measurement Experiment 

Setup. The sinusoidal trajectory is configured to run by 5 cycles within 5s under different 

frequencies. The measured_js topic publishes sensor measured joint positions. The setpoint_js 

topic publishes the command that was received by the arm controller. 

 

RESULT 
The throughput experiment revealed key performance thresholds for both DDS and ROS bridges 

under increasing publishing frequency: 

• Below 1.6 kHz: Both the server-side publisher (dvrk_console_json) and the client-side 

subscriber (DDS or ROS) were able to sustain the designed frequency without 

degradation as shown in Figure 8a. 

• At 3.2 kHz and above: The server-side bridge could no longer maintain the target 

frequency. The limiting factor could be the computation speed of the application, which 

could not generate and publish messages fast enough—regardless of whether DDS or 

ROS was used. 

• At 50 kHz and above: Packet loss occurred on the server side for both DDS and ROS. 

ROS exhibited more pronounced loss, indicating that DDS is comparatively more 

resilient under high-frequency load, though both approaches exceeded the practical 

throughput capacity of the system as shown in Figure 8b. 

These findings highlight that while both bridges are suitable for typical control frequencies (<1 

kHz), DDS offers greater robustness under computational stress and higher messaging rates. 

 



 

 

  
 

Figure 8 a. Influence of Frequency Settings on Data Throughput (frequency from 100Hz – 10kHz) 

b. Influence of Frequency Settings on Data Throughput (frequency from 10kHz – 100kHz) 

 

In the second experiment, the mtsDDSBridge was evaluated under varying frequencies from 100 

Hz to 1.6 kHz to assess its impact on trajectory-following accuracy and communication latency. 

The best trajectory performance was observed at 100 Hz, with: 

• Mean error: 0.00231 rad (0.13°) 

• Max error: 0.00648 rad (0.37°) 

• Standard deviation: 0.00140 rad (0.08°) 

 

These results demonstrate that higher frequency does not improve trajectory-following 

performance. In fact, increasing the frequency introduces more system overhead, which in turn 

leads to greater communication latency and delays in completing the trajectory. 

This confirms that an optimal frequency must balance responsiveness with system processing 

capacity, and that overly high update rates can degrade rather than enhance performance in real-

time robotic control. 

It can also be observed from Figure 9c that the received trajectory is offset to the right of the 

published trajectory. The Latency was measured by extracting timestamps from setpoint_js 

messages and comparing them to the corresponding servo_jp command timestamps, representing 

the one-way delay in command transmission and system response. The measured communication 

latency was: 

DDS ROS 

• Mean: 6.62 ms 

• Standard deviation: 2.92 ms 

• Maximum latency: 11.56 ms 

• Reliability*: 98.4% 

• Mean: 5.23 ms 

• Standard deviation: 3.82 ms 

• Maximum latency: 12.94 ms 

• Reliability: 94% 

a b 



 

 

*Reliability: the received data is the same as the published data 

Although the latency results show that ROS achieved a slightly lower mean latency (5.23 ms vs. 

6.62 ms for DDS), it is important to consider data completeness and reliability. Out of 500 expected 

samples, ROS received only 492, and just 94% of the data were considered valid for analysis. 

 

 

 
 

Figure 9 a. Trajectory-following performance evaluation result (100Hz). b. Trajectory-following 

performance statistical results (100Hz, 500Hz, 1kHz, 1.6kHz). c. Trajectory-following one-way 

latency evaluation result (100Hz). 

 

CONCLUSION  
DISCUSSION AND FUTURE WORK  
The results from the two experiments provide valuable insights into how developers and system 

integrators can select appropriate communication frequencies and anticipate system behavior in 

terms of latency and trajectory-following accuracy when using the mtsDDSBridge in real-time 

robotic systems. 

a b 
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Overall, the experiments suggest that higher communication frequencies do not necessarily lead 

to better performance. Instead, they may introduce increased latency, computational load, and 

trajectory deviation. The trajectory-following experiment showed that optimal tracking was 

achieved at 100 Hz, with low error and minimal delay. This indicates that for most practical 

applications, particularly those involving moderate-speed manipulation or surgical assistance, 

frequencies below 1 kHz offer a good balance between responsiveness and system stability. 

In the maximum throughput experiment, the system demonstrated reliable performance up to 1.6 

kHz. However, at 3.2 kHz and above, the application could no longer maintain the target 

publishing rate. This highlights a processing bottleneck on the server side, likely due to limitations 

in computational throughput, thread scheduling, or memory bandwidth. To push the system’s 

capabilities beyond this point, it would be necessary to optimize the computational efficiency of 

the application. At frequencies above 50 kHz, the subscriber rate was observed to fall behind the 

publishing rate, indicating packet drops or delayed delivery. Potential causes include operating 

system scheduler delays and default DDS QoS settings. To address these issues and improve 

performance at higher frequencies, two strategies are recommended. Optimize DDS QoS settings 

using a static payload and adjusting deadline and lifespan parameters to suit real-time needs [4]. 

Additionally, bind critical processes to isolated CPU cores, reducing OS-induced jitter and 

contention [5], thereby ensuring more consistent execution timing. 

 

MANAGEMENT SUMMARY 

KEY DELIVERABLES 

This project successfully met the minimum and most of the expected and maximum deliverables. 

A runnable application using DDS middleware integrated with the CISST library was achieved, 

the system was validated on physical hardware, and performance was tested on both the physical 

dVRK platform and in simulation environments. ROS-compatible DDS publishing/subscribing 

was also implemented to support integration with ROS ecosystem tools. One expected feature 

(DDS-CRTK) is still under development. 

 

Minimum • A runnable application using pure DDS middleware 

with CISST library. 

   



 

 

Expected • Deploy and validate the application on a physical 

system. 

   

• Test DDS based application performance in both 

remote and local console environments.  

   

• Topic and type auto population in compliance with 

CRTK naming convention. 

       

Maximum • Enable DDS message publishing/subscribing in a 

ROS2-compatible format to integrate with ROS 

ecosystem tools. 

   

 

 

DEPENDENCIES 

All required dependencies, including software libraries, licenses, and dVRK hardware, were 

acquired on time. 

 

Dependency Need Status DDL 

CISST library Necessary software library Acquired  02/28 

RTI DDS SDK Necessary software library Acquired 02/28  

RTI DDS license Necessary license for SDK Acquired 02/28 

ROS2 RMW library Necessary software library Acquired 02/28 

dVRK hardware Necessary for performance verification Acquired 03/30 
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APPENDIX 
 

Project Management https://github.com/users/stevenleon99/projects/4 

 

Project Code Repository https://github.com/stevenleon99/cisst_dds_bridge 
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