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INTRODUCTION
BACKGROUND

Data Distribution Service (DDS) is a real-time, brokerless middleware standard designed for
distributed systems that require low-latency, high-reliability, and scalable communication. By
enabling direct peer-to-peer communication through the Real-Time Publish-Subscribe (RTPS)
protocol, DDS avoids centralized bottlenecks and supports fine-grained Quality of Service (QoS)
control for deterministic performance.

The da Vinci Research Kit (dVRK) currently relies on the cisstMultiTask software framework,
which manages modular, real-time execution through its core building block, mtsComponent. !
This component-based design enables structured data flow and command exchange through well-
defined interfaces. For interprocess and interdevice communication, the system uses the Robot
Operating System (ROS) via the mtsROSBridge. However, the ROS middleware layer introduces
communication latency, system overhead, and limited scalability, making it less suitable for the

stringent real-time demands of surgical robotics.

GOAL

As shown in Figure 1, the goal of this project is to replace the ROS-based middleware in the dVRK
software stack with DDS, enabling more efficient and deterministic interprocess communication.
This requires developing a DDS communication layer that conforms to the existing mtsComponent
architecture in cisstMultiTask, which promotes modularity, thread safety, and real-time
responsiveness through its interface-based design. Preserving this architecture is essential to
ensure seamless integration and consistent system behavior.

Beyond internal communication, the project also aims to retain compatibility with the broader ROS
2 ecosystem. Tools such as RViz, Gazebo, and Movelt rely on standardized ROS 2 naming
conventions, and since ROS 2 itself is built on top of DDS providers (e.g., RTI Connext, Cyclone
DDS), aligning DDS message definitions with ROS 2 conventions allows for interoperability. This
hybrid approach enables the system to benefit from the performance of native DDS while

continuing to leverage the tooling and visualization capabilities of ROS 2.
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Figure 1. dVRK Software Architecture. The IPC/IDC communication is achieved by ROS which

also allows integration with popular tools such as RViz, Gazebo, and Movelt. The new DDS

middleware is proposed as the replacement for ROS Middleware.

SIGNIFICANCE

Replacing ROS’s default middleware with a native DDS-based solution brings several key
advantages to real-time robotic systems, particularly in surgical applications where performance
and determinism are non-negotiable.

First, DDS offers ease of implementation and deployment. ROS 2 installations often involve
complex dependencies, fragile package versions, and lengthy setup processes—especially when
building from source or enabling real-time capabilities. In contrast, DDS implementations such as
RTI Connext DDS are packaged as standalone middleware libraries that are easier to integrate into
custom robotic software stacks without needing to install the full ROS ecosystem.

Second, DDS provides broader platform compatibility. Although ROS 2 supports multiple
operating systems in theory, its real-time support, tooling, and package stability are largely
optimized for Linux—often limiting deployment options for embedded systems, real-time
operating systems (RTOS), or Windows-based environments. In contrast, DDS middleware like
RTI Connext DDS is designed for seamless deployment across Linux, Windows, QNX, VxWorks,
and other platforms, making it a better choice for cross-platform and production-grade

deployments.



Third, DDS enables superior performance and deterministic communication. Studies have shown
that DDS can outperform traditional message brokers and ROS 2’s RMW by over 50% in terms
of latency!®!, which is essential in applications requiring microsecond-level responsiveness. DDS’s
peer-to-peer architecture eliminates centralized bottlenecks, ensuring scalable, real-time data flow
with predictable timing.

Finally, RTI Connext was selected for this project not only for its high performance and reliability
but also because it offers a free academic license and a rich ecosystem of development tools. These
include traditional utilities like the Admin Console, Monitor, and Recording Service for real-time
introspection, as well as modern Al-powered features that significantly accelerate development.
For instance, developers can now integrate Connext with GitHub Copilot in Visual Studio Code,
enabling automatic code generation, intelligent error detection, and contextual assistance. RTI’s
Al-powered System Designer allows users to prototype and configure DDS XML profiles using
natural language, while the Connext Al Chatbot provides real-time, product-specific help with
QoS tuning, code validation, and system design. These features not only streamline the
development workflow but also lower the learning curve for new users—making DDS a more

accessible and scalable solution for building complex, real-time robotic systems.

Together, these advantages position DDS not only as a technically superior middleware for high-
performance medical robotics but also as a practical and scalable solution for long-term, cross-

platform deployment.

TECHNICAL APPROACH
DESIGN OVERVIEW

To integrate DDS into the dVRK communication framework, I developed a new component,
mtsDDSBridge, based on the cisstMultiTask architecture as shown in Figure 2. The system bridges
CISST components with DDS-based interprocess communication (IPC), replacing ROS-based IPC
while maintaining compatibility with existing ROS-based applications. Hence, legacy ROS scripts

remain fully compatible after this upgrade.

The mtsDDSBridge class inherits from mtsTaskPeriodic, enabling it to operate as a thread-safe

component with built-in support for real-time execution, connection to other CISST components,



and runtime services such as logging and debugging. This design ensures that DDS communication

can be seamlessly embedded into the existing dVRK software infrastructure.

Another core function of the bridge is data type conversion. Since CISST uses its own encapsulated
data types that wrap standard C++ types, the mtsDDSBridge implements conversion routines that
translate these types into DDS-compatible and ROS-compatible formats. Crucially, the conversion
preserves the data timestamps, which are essential for functions or applications that process data
from different sources. To facilitate interoperability with ROS, the system adheres to ROS-
compatible topic naming and message type conventions. As a result, real-time joint position

updates from the robot can be visualized in RViz, bypassing the ROS middleware entirely.

From a user perspective, the implementation of mtsDDSBridge brings significant flexibility and
usability improvements. Users can now choose to access the dVRK system either through standard
ROS nodes or by creating native DDS nodes. Plus, users can greatly benefit from the Al-assisted
tools to create their DDS application framework using System Designer and Connext Chatbot,

allowing them to concentrate more on the core code.
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Figure 2. mtsDDSBridge middleware architecture. The middleware provides interfaces to the
ROS family applications and to the CISST component. The user can also access those interfaces
either from a DDS node or ROS node with publisher-subscribe model.



KEY DESIGN PATTERN

In this section, I will further explain the design philosophy of mtsDDSBridge with respect to three
aspects: the communication model, DDS class instantiation (participant, publisher, etc.), and ROS-
compatible topic design. The mtsDDSBridge is designed to mirror the modular and interface-based
architecture of the cisstMultiTask framework while exposing its communication channels to the
DDS network. As shown in Figure 3, mtsDDSBridge connects to a given CISST component (e.g.,
dVRK) via its required and provided interfaces, enabling external DDS nodes to interact with
internal CISST commands, events, and data streams. In CISST, events and commands use named
functions (event handlers and command interfaces) to drive logic, while data transmission uses
StateTable integration to handle continuous, timestamped data exchange. You can find a more

intuitive example from Chocolate Factory.

These represent different patterns of data flow and control, and users can employ a DDS node

using specific function templates that instantiate DDS publishers or subscribers accordingly.
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Figure 3. Data/Signal interfaces between CISST component and mtsDDSBridge

The mtsDDSBridge follows the recommended DDS communication structure outlined by RTI

Connext *), using a hierarchical design pattern to instantiate and manage DDS entities. This


https://github.com/stevenleon99/cisst_dds_bridge/blob/main/cisst_dds_bridge/example/example.cpp
https://community.rti.com/static/documentation/connext-dds/current/doc/manuals/connext_dds_professional/getting_started_guide/cpp98/intro_datatypes.html

structured approach ensures modularity, scalability, and consistent application of QoS (Quality of
Service) policies across components. As shown in Figure 4, the foundational building block is the
Participant, which represents a single application instance in a DDS domain. All communication
entities—Publishers, Subscribers, DataWriters, and DataReaders—are created from this

participant. Each level supports its own class of QoS policies.

In mtsDDSBridge, this structure is reflected in the add dds_publisher() and add _dds_subscriber()
functions, which instantiate Publisher and Subscriber objects tied to the central participant. These
functions first check whether an instance already exists for the given name, and if so, they reuse
the existing object rather than creating a new one. Reusing publishers and subscribers helps to
conserve system resources and maintain consistent QoS policy application. Writers and readers
are then created per topic through helper classes, following a one-to-one mapping with CISST

communication endpoints.
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Figure 4. DDS Entity Hierarchy and QoS Configuration Layers

To ensure interoperability between DDS nodes and ROS applications, the mtsDDSBridge adheres

to a two-step compatibility process that enables seamless data exchange and topic discovery within

the ROS ecosystem.

Step 1: ROS Topic Name Convention: ROS 2 relies on a specific naming convention for DDS
topics. To make DDS topics discoverable and interpretable by ROS applications, topic names must

conform to ROS's namespace and prefixing rules.

* Regular ROS topics are discovered if they are prefixed with "rt/" (i.e., "ROS topic") as
shown in Figure Sa.
* Topics related to services, actions, and parameters follow the "rq/" (request) and "rr/"

(response) prefix patterns.



Step 2: ROS-Compatible Data Types: DDS message types must also match ROS expectations for
communication to succeed. ROS message types are translated into DDS IDL-generated types,

often nested under vendor-specific namespaces as shown in figure 5b. For example:

« A ROS 2 std msgs/String message is converted to the DDS type:
std msgs::msg::dds ::String

A ROS-DDS communication test script was developed as shown in figure 5S¢ to show the messages

can successfully stream on the topic “PSM1/measured js”.
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https://github.com/RTInd/ros-integration-toolkit
https://github.com/RTInd/ros-integration-toolkit

ROS-DDS Communication Test script is used to control the trajectory of PSM1 and collect the
joint state data. [Here is a complete demo video]

IMPLEMENTATION
The mtsDDSBridge middleware is instantiated and equipped to a CISST component in two ways:

Method 1 manual integration within a sample project: In this method, both the target CISST and
the mtsDDSBridge component are created within the same project. Developers can explicitly
register both components using mtsManagerLocal, and manually connect the required and

provided interfaces through the code. [Methodl example]

Method 2: Library Integration for Existing Executables: When integrating the bridge into an
existing CISST-based application—such as dvrk console json or
sawIntuitiveResearchKitQtJISON—the mtsDDSBridge component is compiled into a shared
library In this case, interface connections are automatically configured at runtime using a .json
configuration file. This file defines both the library reference and the interface connection schema,
allowing the executable to dynamically load and link the bridge without modifying its source code.

[Method2 example]

EXPERIMENT SETUP

To evaluate the performance of the mtsDDSBridge, two experiments were conducted using
different integration methods and application contexts. Each experiment is designed to assess
specific performance aspects of the bridge, including throughput, latency, and trajectory-following
fidelity. All experiments were performed on a single computer (Intel(R) Core(TM) 17-14700KF
3.40 GHz, 32GB RAM), using ROS or DDS to provide inter-process communication.

The first experiment aims to compare the throughput capability of mtsDDSBridge versus the
existing mtsROSBridge. As illustrated in Figure 6, both bridges were integrated into the same
application: dvrk console json. A designed frequency ranging from 100 Hz to 100 kHz was
configured in the main application loop. The system’s server-side publishing rate (DDS or ROS

bridge frequency) and client-side subscription rate (DDS or ROS subscriber frequency) were


https://github.com/stevenleon99/cisst_dds_bridge/blob/main/cisst_dds_bridge/test/ddsROSCommTest.py
https://drive.google.com/file/d/1GtuWdwrkMg6oUVV-rhBpx9G2BfLztl02/view?usp=drive_link
https://github.com/stevenleon99/cisst_dds_bridge/tree/main/cisst_dds_bridge/example2
https://github.com/stevenleon99/cisst_dds_bridge/tree/main/cisst_dds_bridge/example2

measured to determine how efficiently data is transmitted and received across the two middleware

systems.

Although such high frequencies exceed those used in practical robot control scenarios, the purpose

of this experiment is to stress the system and identify maximum achievable throughput.
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Figure 6. Maximum Throughput Performance Evaluation Experiment Setup

The second experiment evaluates communication latency and trajectory-following performance
using mtsDDSBridge in a closed-loop robotic control task. As shown in Figure 7, the experiment
is executed using sawlIntuitiveResearchKitQtConsoleJSON with the mtsDDSBridge linked as a
library. An external Python script, ddsPSMSinMoveTest.py, is used to publish a predefined cosine
joint trajectory via the servo_jp topic. During execution, the script also subscribes to setpoint_js

and measured_js topics to collect feedback.

Latency measurement: Extract timestamps from setpoint js messages and compare them to

timestamps in servo_jp commands to calculate roundtrip latency.

Trajectory deviation analysis: Analyze joint position values from measured js and compare them
against expected cosine wave values to compute trajectory error under different bridge publishing

frequencies.
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Figure 7. Trajectory Following Performance Evaluation and Latency Measurement Experiment
Setup. The sinusoidal trajectory is configured to run by 5 cycles within 5s under different
frequencies. The measured js topic publishes sensor measured joint positions. The setpoint js
topic publishes the command that was received by the arm controller.
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RESULT

The throughput experiment revealed key performance thresholds for both DDS and ROS bridges

under increasing publishing frequency:

e Below 1.6 kHz: Both the server-side publisher (dvrk console json) and the client-side
subscriber (DDS or ROS) were able to sustain the designed frequency without
degradation as shown in Figure 8a.

e At 3.2 kHz and above: The server-side bridge could no longer maintain the target
frequency. The limiting factor could be the computation speed of the application, which
could not generate and publish messages fast enough—regardless of whether DDS or
ROS was used.

e At 50 kHz and above: Packet loss occurred on the server side for both DDS and ROS.
ROS exhibited more pronounced loss, indicating that DDS is comparatively more
resilient under high-frequency load, though both approaches exceeded the practical

throughput capacity of the system as shown in Figure 8b.

These findings highlight that while both bridges are suitable for typical control frequencies (<1

kHz), DDS offers greater robustness under computational stress and higher messaging rates.
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Figure 8 a. Influence of Frequency Settings on Data Throughput (frequency from 100Hz — 10kHz)
b. Influence of Frequency Settings on Data Throughput (frequency from 10kHz — 100kHz)
In the second experiment, the mtsDDSBridge was evaluated under varying frequencies from 100
Hz to 1.6 kHz to assess its impact on trajectory-following accuracy and communication latency.
The best trajectory performance was observed at 100 Hz, with:

e Mean error: 0.00231 rad (0.13°)

e Max error: 0.00648 rad (0.37°)

e Standard deviation: 0.00140 rad (0.08°)
These results demonstrate that higher frequency does not improve trajectory-following
performance. In fact, increasing the frequency introduces more system overhead, which in turn

leads to greater communication latency and delays in completing the trajectory.

This confirms that an optimal frequency must balance responsiveness with system processing
capacity, and that overly high update rates can degrade rather than enhance performance in real-

time robotic control.

It can also be observed from Figure 9c that the received trajectory is offset to the right of the
published trajectory. The Latency was measured by extracting timestamps from setpoint js
messages and comparing them to the corresponding servo_jp command timestamps, representing
the one-way delay in command transmission and system response. The measured communication

latency was:

DDS ROS
e Mean: 6.62 ms e Mean: 5.23 ms
e Standard deviation: 2.92 ms e Standard deviation: 3.82 ms
e Maximum latency: 11.56 ms e Maximum latency: 12.94 ms
e Reliability*: 98.4% e Reliability: 94%




*Reliability: the received data is the same as the published data

Although the latency results show that ROS achieved a slightly lower mean latency (5.23 ms vs.
6.62 ms for DDS), it is important to consider data completeness and reliability. Out of 500 expected

samples, ROS received only 492, and just 94% of the data were considered valid for analysis.
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Figure 9 a. Trajectory-following performance evaluation result (100Hz). b. Trajectory-following
performance statistical results (100Hz, 500Hz, 1kHz, 1.6kHz). c. Trajectory-following one-way
latency evaluation result (100Hz).

CONCLUSION
DISCUSSION AND FUTURE WORK

The results from the two experiments provide valuable insights into how developers and system
integrators can select appropriate communication frequencies and anticipate system behavior in
terms of latency and trajectory-following accuracy when using the mtsDDSBridge in real-time

robotic systems.



Overall, the experiments suggest that higher communication frequencies do not necessarily lead
to better performance. Instead, they may introduce increased latency, computational load, and
trajectory deviation. The trajectory-following experiment showed that optimal tracking was
achieved at 100 Hz, with low error and minimal delay. This indicates that for most practical
applications, particularly those involving moderate-speed manipulation or surgical assistance,

frequencies below 1 kHz offer a good balance between responsiveness and system stability.

In the maximum throughput experiment, the system demonstrated reliable performance up to 1.6
kHz. However, at 3.2 kHz and above, the application could no longer maintain the target
publishing rate. This highlights a processing bottleneck on the server side, likely due to limitations
in computational throughput, thread scheduling, or memory bandwidth. To push the system’s
capabilities beyond this point, it would be necessary to optimize the computational efficiency of
the application. At frequencies above 50 kHz, the subscriber rate was observed to fall behind the
publishing rate, indicating packet drops or delayed delivery. Potential causes include operating
system scheduler delays and default DDS QoS settings. To address these issues and improve
performance at higher frequencies, two strategies are recommended. Optimize DDS QoS settings
using a static payload and adjusting deadline and lifespan parameters to suit real-time needs 4.
Additionally, bind critical processes to isolated CPU cores, reducing OS-induced jitter and

contention 1), thereby ensuring more consistent execution timing.

MANAGEMENT SUMMARY
KEY DELIVERABLES

This project successfully met the minimum and most of the expected and maximum deliverables.
A runnable application using DDS middleware integrated with the CISST library was achieved,
the system was validated on physical hardware, and performance was tested on both the physical
dVRK platform and in simulation environments. ROS-compatible DDS publishing/subscribing
was also implemented to support integration with ROS ecosystem tools. One expected feature

(DDS-CRTK) is still under development.

Minimum * A runnable application using pure DDS middleware

with CISST library.




Expected * Deploy and validate the application on a physical

system.

* Test DDS based application performance in both

remote and local console environments.

* Topic and type auto population in compliance with

CRTK naming convention.

Maximum * Enable DDS message publishing/subscribing in a
ROS2-compatible format to integrate with ROS

ecosystem tools.

DEPENDENCIES

All required dependencies, including software libraries, licenses, and dVRK hardware, were

acquired on time.

Dependency Need Status DDL

CISST library Necessary software library Acquired 02/28

RTI DDS SDK Necessary software library Acquired 02/28

RTI DDS license Necessary license for SDK Acquired 02/28

ROS2 RMW library Necessary software library Acquired 02/28

dVRK hardware Necessary for performance verification Acquired 03/30
REFLECTION

I would like to thank the mentors for their background guidance and technical feedback, and Anton
for leading two insightful workshops that supported the DDS integration effort. Through this
project, I gained foundational knowledge of real-time robotic architecture via the cisstMultiTask
framework, and significantly deepened my understanding of DDS middleware, particularly in the
areas of performance tuning and experimental validation. On a personal level, I improved my
project leadership, time management, and cross-team collaboration skills—strengthening both

technical and professional competencies.
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Project Code Repository https://github.com/stevenleon99/cisst_dds_bridge
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